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fessional guidance, and Ing. Tomáš Řehořek for his various insights into the
recommender systems. I would also like to thank my family and friends for
their support throughout my whole studies.





Declaration

I hereby declare that the presented thesis is my own work and that I
have cited all sources of information in accordance with the Guideline for
adhering to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended.
In accordance with Article 46(6) of the Act, I hereby grant a nonexclusive
authorization (license) to utilize this thesis, including any and all computer
programs incorporated therein or attached thereto and all corresponding
documentation (hereinafter collectively referred to as the “Work”), to any
and all persons that wish to utilize the Work. Such persons are entitled
to use the Work in any way (including for-profit purposes) that does not
detract from its value. This authorization is not limited in terms of time,
location and quantity.

In Prague on 10th May 2016 . . . . . . . . . . . . . . . . . . . . .



Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Radek Bartyzal. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and
its usage without author’s permission is prohibited (with exceptions defined
by the Copyright Act).

Citation of this thesis

Bartyzal, Radek. Optimization of Recommender Systems. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2016.



Abstrakt

Tato práce poṕı̌se typy doporučovaćıch systémů, algoritmy stoj́ıćı za nimi
a zp̊usoby hodnoceńı těchto systémů se zaměřeńım na online metodiky.
Dále představ́ı nový SAOOA algoritmus inspirovaný evolučńımi strategiemi,
který s využit́ım modelu z gaussovké směsi optimalizuje nasazené doporučovaćı
systémy za běhu. Fungováńı algoritmu bude objasněno na simulovaných
problémech a nakonec otestováno na skutečných doporučovaćıch systémech.
Spolu s algoritmem budou také představeny metody zobrazeńı jeho vnitřńıho
stavu nebo kvalit jednotlivých konfiguraćı optimalizovaného systému.

Kĺıčová slova Doporučovaćı systémy, online optimalizace, A/B testováńı,
gaussovská směs
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Abstract

This thesis will review classification of recommender systems, the most
frequently used algorithms behind them and approaches how to evaluate
them with a special attention paid to the online methodologies. It will
continue with description of a new SAOOA algorithm inspired by evolu-
tionary strategies that is capable of optimizing the recommender systems
online using a Gaussian mixture model. The exact functionality of the al-
gorithm will be explained using simulated experiments and tested on real
world recommender systems. Methods to visualize the quality of different
parameter settings of a recommender system or the state of the algorithm
will be presented as well.

Keywords Recommender systems, online optimization, A/B testing, Gaus-
sian mixture
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Chapter 1

Introduction

1.1 Motivation

With more and more information being easily accessible on the Internet,
users are forced to spend equally more time looking for the most relevant
ones, whether it is the best mobile phone to suit their needs or the perfect
movie for their evening. That is the reason why personal recommender
systems were invented. To help users with the selection by recommending
them what they might be looking for. Thanks to the growing amount of
information the recommender systems are on a large number of sites today,
such as: Youtube [2], Netflix [3], Steam [4] and others. Which makes this
topic even more interesting.

During the evolution of recommender systems many different algorithms
have been invented. Because these algorithms perform differently in various
domains and tasks, it is important to know which one is going to perform
best under specific conditions. Therefore several methods and metrics have
been proposed to compare them. We are going to review the most fre-
quently used algorithms and some of the comparison methods.

After selecting the best algorithm to suite our domain, another problem
arises. Due to the fact that the domain constantly changes, it is necessary
to optimize settings of the system online to ensure a lasting performance.
We will present an optimization method designed with that purpose in
mind and demonstrate its functionality on both simulations and real world
databases.
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1. Introduction

1.2 Goals

Main goals of this thesis are:

• Design and implement an online optimization method that will search
for the best configuration of a recommender system while overcoming
noise and changes in the environment.

• Review algorithms behind recommendation systems and approaches
how to evaluate their quality.

• Implement visualization methods allowing to evaluate quality of dif-
ferent parameter settings of recommendation systems.

• Demonstrate the functionality of the optimization method on several
databases and discuss the performance in specific use cases.

1.3 Outline

The thesis starts by describing and categorizing the recommender systems
and algorithms they use in Chapter 2. It continues by presenting the pro-
posed optimization algorithm (Chapter 3) and follows by testing it and
demonstrating its ability to work in real environments (Chapter 4). The
work is concluded by a summary of achieved results and suggestions for
future work.
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Chapter 2

Related work

This chapter describes recommender systems, methods to evaluate and op-
timize them and the most popular algorithms. It also explains other terms
and methods used during the design of the proposed optimization method
described in the next chapter.

2.1 Recommender systems

Recommender (or recommendation) systems were originally defined as a sys-
tem that takes user’s recommendations as input and forwards them to users
that may find them interesting [5]. Since then, many other ways of produ-
cing recommendations have been introduced and as a result the definition
has been broadened to any system that provides recommendations of items
interesting to the user [6].

The recommended items mentioned previously represent what the sys-
tem works with, which can be almost anything nowadays, news articles,
music, movies, electronics, books or jobs, basically anything that is offered
online.

With an ever increasing amount of content on the Internet the popularity
of recommender systems flourishes due to a phenomenom called information
overload meaning that users are no longer capable of browsing through all
the offered items in a reasonable time span. Recommender systems fight
with this modern problem by tailoring the recommendations to each user,
effectively personalizing their experience by showing them relevant items
[7]. Another thing that increased the interest in recommender systems was
a Netflix prize, a competition to design a better recommendation system
with a winning prize of one million dollars [8, 9].
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2. Related work

Recommender systems are usually divided into four categories based on
how they produce the recommendations [10]:

• Collaborative filtering generates recommendations based on what users
with similar past behavior were interested in [11]. While it can re-
commend novel items that would be otherwise left undiscovered by
the user it also suffers from a problem called Cold start meaning it
needs a lot of information about a large number of users to be able
to match them together and recommend relevant items [12].

• Content based filtering generates recommendations consisting of items
similar to the ones that are interesting to the user. This eliminates
the need of large number of users with known histories. On the other
hand, completely novel items, not similar to any of the items the user
interacted with in the past, are not recommended at all [13].

• Knowledge based uses a knowledge of user’s preferences to generate
recommendations of items with corresponding attributes. In com-
parison with collaborative and content filtering it does not need to
gather any data about users because every recommendation is unique
and based solely on the knowledge that the user provided [10].

• Hybrid approaches combine two or more types together. Thanks to
its ability to benefit from strengths of multiple previously described
methods while at the same time reducing their weaknesses, the hybrid
approach is used most often [6]. A simple example may be using a
Content based filtering till enough information is accumulated about
the user and then switching to Collaborative filtering.

2.2 Evaluation of Recommender systems

With an increasing popularity of recommender systems in past years, a
large number of different algorithms was invented which prompted a need
to evaluate these algorithms to be able to recognize the best ones for a
specific task and domain.

Unfortunately, evaluating recommender system and their algorithms has
proven to be very difficult for multiple reasons [14].

First, recommender systems can be required to fulfill different tasks, for
example trying to predict user’s ratings is not similar to increasing revenues
or suggesting novel items.

Secondly, different algorithm were designed with different goals in mind,
some are trying to recommend as many items as possible and some are
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2.2. Evaluation of Recommender systems

focusing on the highest accuracy of predictions. A lot of different goals
exist and it is up to discussion which ones or what combinations of them
best represent the domain’s needs.

A brief introduction into both of these problems combined with an over-
view of different experimental settings is provided in the following para-
graphs.

2.2.1 Experimental settings

In order to decide which one of the recommender algorithms should be
deployed or whether is a new algorithm better than the current one, it is
necessary to compare several candidate solutions.

Three different types of experiments are being widely used, since each
one of them has its strengths and weaknesses they are usually combined to
achieve a more complex evaluation. [15]

2.2.1.1 Offline evaluation

Offline evaluation uses previously collected data to compare the algorithms,
therefore it assumes that the user behavior captured in these historic data
will be similar to the behavior at the time of deployment.

Main advantage of offline evaluation is that it does not require any user
interaction making it very fast and cheap. On the other hand, it allows to
evaluate only the quantitative properties of the algorithm such as prediction
accuracy.

As a result, the offline evaluation is mostly used to rule out the sub-
stantially unsuitable algorithms whose evaluation would be a waste of an
expensive user’s time or it could it even drive them away if tested during
an online experiment.

2.2.1.2 User study

User studies consist of gathering a group of users and asking them to do
certain tasks that interact with the recommender system while their beha-
vior is observed and recorded. The biggest advantage of this experimental
setting is that not only the quantitative evaluation of the algorithm are
received such as, how many times the user clicked on the recommenda-
tion but assessment of the qualitative properties of the whole recommender
system is also possible by asking the participants questions before, during
and after the experiment. An example of otherwise unreachable feedback is
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2. Related work

whether the user is satisfied with the recommendations or if he trusts the
recommender system not to violate his privacy.

On the other hand, user studies are very expensive and the more ac-
curate representation of the user base is required the more participants are
needed. There is also a possibility that the behavior of the monitored users
will be different because they are aware of being observed or that their
answers will not be truthful due to various reasons.

2.2.1.3 Online evaluation

During online evaluation the system is being used by real users without
knowing that they are a part of an experiment. It is usually realized by dir-
ecting a random samples of users towards specific variants of recommender
system that are being compared.

Due to the fact that this type of evaluation is basically a controlled exper-
iment, similar terminology is being used, it unfortunately varies throughout
the literature and that is why are the most important terms explained be-
low:

• Overall Evaluation Criterion (OEC) or simply an evaluation metric.
Choosing a relevant metric is a very important and difficult task that
is more thoroughly discussed in Section 2.2.2. If multiple different
metrics are chosen, it is recommended to combine them to a single
global metric that represents the quality of the whole system [16].

• Variable or factor is one specific part of the system that can be con-
trolled and the influence of its change is needed to be tested. For ex-
ample if the recommender system uses k-nearest neighbors algorithm,
the k can serve as a variable.

• Version or level is one setting of a variable. If we use the example
from above, each specific k is one of its levels.

• Variant of the recommender system is a state of the system that is
presented to one group of users, therefore it is one assignment of levels
to variables.

Multiple versions of controlled experiments exist, which one to use de-
pends on how much user traffic is available and whether are all the variants
implemented and ready to be compared to the default control variant. Brief
overview of the possible experiments follows:
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2.2. Evaluation of Recommender systems

• A/B Testing is the simplest representative of controlled experiments.
One variable with two levels, A and B, is tested. The original variant
of the system (A) is called Control and the one that is being tested
(B) is Treatment.

• A/B/n Testing is a modification of A/B Testing where is still tested
only one variable but with multiple levels. All the variants that are
being compared to the original Control variant are called Treatments.

• MultiVariable Testing (MVT) is a modification of A/B/n Testing
where multiple variables are tested. The advantage over testing a
single variable at a time is that it is much faster and we can find out
the possible interactions between the variables. On the other hand,
the interpretation of the measured data is much more difficult.

• Null test or A/A test is when both groups are exposed to two exactly
the same variants of the system. It is recommended to run this kind
of test prior to any other online evaluation to make sure that the
experiment has been set up correctly. For example whether is the
user splitting unbiased or whether has statistically enough data been
accumulated before making any assumptions. [17]

While we compare the different variants, the global metric of the sys-
tem can be optimized by redirecting more users towards the promising
variants according to, for example, methods similar to Multi-armed bandit
algorithms [18].

Online evaluation is the most relevant comparison of different candidate
solutions allowing us to asses the system in real world environment and
gives us unique access to overall evaluations such as total revenues.

While undoubtedly very useful, it has to be approached with caution
because testing a system recommending wrong items can deter users from
using it ever again, negatively impacting the whole system as a result. It
is therefore recommended to make offline experiments first, followed by a
user study and then polish the final recommender system during an online
evaluation.

2.2.2 Tasks and corresponding metrics

Recommender systems were initially evaluated according to their accuracy
of prediction of user’s preferences however a lot of studies recently showed
that this kind of metric does not represent the real qualities of the system
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2. Related work

[19, 20, 21]. One of the examples pointing out this problem is that recom-
mending most popular items tends to have a high accuracy but users are
usually already familiar with them, therefore these suggestions are not at
all useful.

In order to relevantly compare recommender systems, a proper evalu-
ation metric or their combination needs to be chosen. This choice is heavily
influenced by the recommender’s task because selecting a wrong metric can
lead to choosing an improper algorithm for the task at hand [22].

The majority of recommender systems can be divided into three distinct
categories according to their task with their evaluation in mind [14].

2.2.2.1 Recommending good items

The most typical recommendation task is to recommend items that the user
finds interesting [23]. Finding such relevant items can be achieved by mul-
tiple ways, one of the examples is an internet-based retailer Amazon which
is providing a ”Customers Who Bought This Item Also Bought” list to users
browsing their store. The most frequently used algorithms are described in
Section Algorithms of Recommender systems.

If are all items considered as relevant or irrelevant according to user’s
preferences, the resulting recommender system is very similar to information
retrieval systems such as web or library search engines, therefore similar
metrics are being used to evaluate both of these systems [24].

The most popular metrics in information retrieval are Precision and Re-
call [25], which are computed from a confusion matrix constructed much
alike Table 2.1.

items that were: actually relevant actually not relevant

predicted relevant #TP #FP

predicted not relevant #FN #TN

Table 2.1: Categorization of recommended items according to their relev-
ance

.

#TP (true positives) represents the number of recommended items that
were actually relevant to the user, #FP stands for false positives, #FN for
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2.2. Evaluation of Recommender systems

false negatives and #TN for true negatives, their meaning follows the ex-
ample of #TP and can be easily derived from the aforementioned table. [15]

Precision (P ) =
#TP

#TP + #FP
(2.1)

Recall (R) =
#TP

#TP + #FN
(2.2)

Precision (2.1) is the fraction of relevant recommended items or the
probability that a recommended item is relevant. Whereas recall (2.2) also
called True positive rate or Sensitivity is the fraction of all relevant items
which are recommended or in other words the probability that a relevant
item is recommended. [20, 15]

Consider the following example:
If only one item is recommended and it is relevant then precision is

100% and recall is very low, on the other hand if all the possible items are
recommended then the result is exactly the opposite.

It can be clearly seen that both of these measures are heavily influenced
by the number of recommended items, as it gets larger the recall increases
and the precision decreases. Setting the size of the recommended list to a
fixed number leads to a task called Top-N Recommendations. If the size
varies, evaluation can be done for example by calculating precision-recall
curves [15].

Another thing that can be clearly seen, especially in the second scenario,
is that the recall alone does not represent the quality of the recommender
system very accurately, therefore both of these metrics need to be considered
together. Many possibilities exist but the most popular one is F1 score (2.3),
combining the measures by calculating their harmonic mean.

F1 score =
2 ∗ P ∗R
P +R

(2.3)

The alternative to the precision and recall is the Area under ROC
curve (AUC) where ROC stands for receiver operating characteristic [26].
ROC curve represents recall against false positive rate, its objective is to
maximize recall while not recommending irrelevant items (minimizing fall-
out (2.4)) [24].

False positive rate (fallout) =
#FP

#FP + #TN
(2.4)

9



2. Related work

It has been suggested that many of the traditional metrics used in in-
formation retrieval are not suitable to properly evaluate the recommender
systems due to the different context. For example returning a known item
is not at all wrong in information retrieval but it is usually not considered
as a good recommendation [20].

Currently many researchers agree with that view and as a result a large
number of new metrics have been proposed based on what exactly is the re-
commender system used for [19, 21, 23, 20].

One of the proposed popular metrics is the coverage or catalog coverage
[22]. It represents the portion of all the items that is the system capable
of recommending to users. For example a system returning only the best
selling products may have a high precision and accuracy but it will surely
have a low coverage. A similar concept is applied in user coverage which
represents a portion of users that can the system generate recommendations
for.

Among other metrics are, for example, diversity representing how di-
verse are the recommendations which is not as straightforward to calculate
as the previous metrics. And even some that are nearly impossible to meas-
ure, such as user’s satisfaction with the recommender system, his trust in
it or serendipity, a feeling of receiving a novel, unexpected and interesting
recommendation [21].

2.2.2.2 Optimizing utility

Another important task is the optimization of some utility function which in
most cases translates into maximizing profit. Increasing revenues is logically
the main aim of e-commerce websites and recommender systems can help
with that goal by multiple ways [27]:

• Turning browsers into buyers by helping them finding what they want
to buy.

• Improving Cross-sell by introducing users to new items that they
would otherwise overlook.

• Increasing loyalty of users by making more relevant recommendations.

Recommending relevant items is still important, other aspects just have
to be taken into consideration. If a site profits from the time users spend
on it, for example a free news site with adverts, it will try to recommend
items prolonging their session. On the other hand if users pay for the ability
to find quickly what they need, the goal of the recommender system is the
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2.2. Evaluation of Recommender systems

exact opposite.

Quality of such recommender system can be evaluated either through
global metrics, or by calculating the utility of recommended items.

The global metrics directly measure the success rate of increasing the
utility function and are therefore suitable to use for online evaluation of the
recommender systems in which case they are called online metrics. Such
metrics are usually quite simple, typically measuring a total increase in
profit or how many recommendations led to a purchase. They are in most
cases defined by the owner of the domain that is deploying the recommender
system.

Due to the fact that multiple items are recommended at once, the utility
of the whole recommended lists needs to be evaluated. This process is also
called ranked scoring or accuracy of ranks because the recommender system
assigns a higher rank to items that are more likely to be preferred by the
user (are ranked high by the user).

One of the most popular ways to calculate the expected utility of a list
is to multiply the probability that the user looked at the recommended item
by the item’s utility [28]. Estimation of that probability can be divided into
two scenarios:

• A small number of clearly visible recommendations is shown on the
website, for example four article headlines at the bottom of the page.
In this case it can be assumed that the user skims through all of them
noticing anything interesting. Meaning that the probability of him
looking at a recommended item is 100% and therefore, the combined
utility of shown items is a good estimate of the list’s expected utility.
[14]

• A list consisting of large number of recommendations or a short one
offering a possibility to show more of them. Due to the large number
of recommendations, the user cannot be expected to pay the same
attention to all of them. Breese et al. presented a popular half-
life utility score which establishes that each next item in the list has
exponentially lower probability to be noticed by the user [28].

Other ways to calculate the expected utility of a list exist, such as Pear-
son’s product-moment correlation or NDPM (Normalized Distance-based
Performance Measure) measuring the correlation of the predicted rank to
the rank of real preferences of the user [24].
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2.2.2.3 Predicting ratings

Sometimes a knowledge of how would a user rate a specific set of items
is needed. The most popular example is the movie provider Netflix which
organized the previously mentioned Netflix prize consisting of predicting
the ratings of a large set of items.

The predicted ratings can be later used to directly generate recommend-
ations of items with highest ratings or as a part of a more complex recom-
mender system.

From evaluation point of view this is a well understood case similar to
classical evaluation of regression and classification algorithms, which has
been studied for a long time [29, 30, 31].

Undoubtedly the two most popular metrics to measure the prediction
accuracy are Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE). Both of them compute the size of error while predicting user ratings,
the difference is that the RMSE penalizes large errors more whereas MAE
considers all errors equal [32].

Accuracy of rating predictions can be conveniently evaluated offline.
The measured data is split into two parts: training set which is used to
train the recommender system which in turn creates a model supplying the
recommendations and testing set that is used to evaluate the model.

Important part of the evaluation process is how exactly are the two sets
created and subsequently evaluated. Multiple methods exist, each one with
their strengths and weaknesses, among the most frequently used are:

• k-fold cross-validation: Data is split into k folds of approximately
same size that do not overlap. Validation is then run k times. Each
of the folds is used in turn for testing while the others are used for
training. This process can be repeated with different splits which
would improve the validation but at the increased computational cost.
[29]

• Leave-one-out cross-validation: A special case of k-fold cross-validation
where k equals the number of available data instances. Therefore only
one instance is being used as a testing set during a validation run
which translates into low bias but high variance. [29]

• Bootstrap: A bootstrap sample is created by uniformly sampling n
instances from dataset of size n with replacement. It is then used for
training while the rest is used as a testing set. This process is usually
repeated for multiple bootstrap samples. Due to the sampling with
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2.3. Algorithms of Recommender systems

replacement resulting validation has a large bias but low variance.
[29]

In recommendation world the data is represented as users rating items,
these interactions are registered at a certain time. Two approaches are
possible, either is the time completely ignored and all the gathered data are
split into the two sets or a certain time is chosen and all the interactions
registered before that time are used as a training set and the model is tested
against the data collected after the selected time [15].

2.3 Algorithms of Recommender systems

Recommender systems are in absolute majority used to generate a list of
Top-N Recommendations, therefore all the algorithms described in this sec-
tion share this particular goal.

The simplest algorithms are non-personalized which means that they
recommend the same items to everyone. They are easy to implement and
therefore usually serve as a benchmark for the more sophisticated ones.
One of the representatives is for example an algorithm called Top Popular
recommending items with the highest amount of ratings [33].

Many personalized algorithms exist but most of them are based either
on traditional data mining such as Association rules or on collaborative
filtering methods recommending items according to ratings from a certain
neighborhood [1].

2.3.1 k-Nearest Neighbors algorithms

k-Nearest Neighbors algorithms(k -NN) use neighbors meaning similar items
or users to predict the rank of items not yet rated by the user. The highest
ranking items are then recommended, the general outline of this group of
algorithms can be seen in Algorithm 1.

Rating values are stored in a n×m user-item matrix called R which is
depicted in Figure 2.1. Rows represent users and columns represent items,
therefore r23 is a rating that has user 2 given to item 3.

The calculation of similarity is usually either Cosine based or Correla-
tion based comparing either row or column vectors [34].

Cosine based similarity equals to the cosine of the angle between two
vectors, it ranges from −1 meaning that the vectors are completely opposite
to 1 which means identity. The exact calculation is specified in Figure 2.2.
Whole vectors can be compared with missing values replaced by zeroes [33].
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R =


r11 r12 r13 . . . r1m
r21 r22 r23 . . . r2m
...

...
...

. . .
...

rn1 rn2 rn3 . . . rnm


Figure 2.1: User-item matrix of rating values.

Similarity based on correlation is calculated as a Pearson’s correlation
coefficient also called Pearson’s r shown in Figure 2.3. In comparison with
cosine similarity it requires selection of ratings that exist in both vectors,
for example when comparing two items, only the users that rated both of
them are taken into consideration whereas during the cosine approach, all
information is used.

cosine similarity = cos(θ) =
~a ·~b
‖~a‖‖~b‖

=

n∑
i=1

aibi√
n∑

i=1

a2i

√
n∑

i=1

b2i

Figure 2.2: Cosine similarity of two vectors ~a and ~b derived from Euclidean
dot product (·) [1].

Pearson’s r = rab =

∑n
i=1(ai − ā)(bi − b̄)√∑n

i=1(ai − ā)2
√∑n

i=1(bi − b̄)2

ā =
1

n

n∑
i=1

ai b̄ =
1

n

n∑
i=1

bi

Figure 2.3: Correlation similarity of a and b, two samples of ratings of size
n calculated as a Pearson’s r [1].
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Algorithm 1: General outline of neighborhood algorithms

input : Number of items to be recommended N ∈ N,
Number of neighbors used for ranking k ∈ N,
User to recommend items to u,
List of all items Items ,
User-Item matrix of ratings R

output: N items to be recommended

foreach item ∈ Items do
if item /∈ u.rated items then

item.rank ← rank according to nearest neighbors(k, u, item)

descending rank sort(Items)

return top(N , Items)

Both user and item based variants of the k-NN algorithms are very
similar. Which one to use usually depends on the dimensions of the R
matrix with a goal of minimizing the computational cost.

2.3.1.1 User-based k-NN

User-based k-NN algorithms calculate the rank of item i for a user u by
firstly finding the k most similar users by comparing their row vectors of
matrix R (see Figure 2.1) and then aggregating the neighbor ratings of
item i in a way described in a Figure 2.4.

rank(k, u, i) =
∑

û∈Nk(u)

similarity(u, û) · (rû,i − rû)

Figure 2.4: Predicted rank of the item i for the user u calculated from k
most similar users to u.

The rû denoting an average rating of user û is subtracted from his ratings
to reduce a bias coming from the fact that users approach rating scales
differently. For example, some consider 3 stars out of five as an above
average rating while others may have the same feeling about 4 stars. The
similarity can be calculated using these adjusted ratings as well.

The calculated rank could be divided by
∑

û∈Nk(u) similarity(u, û) to
normalize it into the original rating scale but because the point of the al-
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rank(k, u, i) =
∑

î∈Nk(i)

similarity(i, î) · ru,̂i

Figure 2.5: Predicted rank of the item i for the user u calculated from
ratings of u.

gorithm is to find N most relevant items, predicting the exact ratings is
not necessary. The advantage of not normalizing the resulting rank is not
losing the information about the confidence of the predicted rank which
means that items relevant to more neighbors have a higher rank. This
variant of rank calculation has been found to be working best with cosine
similarity and together with it is called Non-Normalized Cosine Neighbor-
hood (NNCosNgbr) [33].

2.3.1.2 Item-based k-NN

The item-based k-NN calculates the rank a little bit differently from the
user based variant. First it finds the k most similar items to i, from the
ones that the user u rated, by comparing the corresponding columns of the
matrix R. Then these ratings of neighbor items are combined according to
Figure 2.5.

The reduction of bias of the user ratings explained in User-based k-NN
can be applied to calculation of similarity but is not used on the rating
multiplying the similarity because all the used rating are from the user u.

Non-Normalized version of the rank calculation offers the same advant-
ages that has been mentioned in User-based k-NN.

2.3.2 Association rules

Mining of association rules is used to find which products are likely to be
bought together or in case of recommender systems which items are relevant
to the user together [35].

To formally define the rules let I be a set of items and T a set of
transactions with a single transaction Tu representing all the relevant items
for a user u. The association rule between two non-empty subsets of I, X
and Y such as X ∩ Y = ∅ represents that if X is relevant to a particular
user then Y is probably relevant to him as well. It is usually denoted as
X ⇒ Y .
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To recommend N items to a user u, the algorithm firstly mines the
association rules that are supported by u, which means that the user finds
all the items in X from a rule X ⇒ Y relevant. Then the algorithm selects
top N items according to the highest ranking rules [1].

One of the most important metric to evaluate the quality of the asso-
ciation rules is support, calculated as a fraction of users that find X ∪ Y
relevant [35]. It can be used to limit the number of acquired rules by re-
moving those that do not meet some predefined minimal support.

A metric that is usually used to rank the rules is called confidence and
calculated as:

confidence (X ⇒ Y ) =
number of users that find X ∪ Y relevant

number of users that find X relevant
(2.5)

It can be also interpreted as a conditional probability that X ∪ Y is
relevant to a particular user given that X is relevant to him [1].

Many other evaluation metrics exist, for example lift defined as a con-
fidence of the rule X ⇒ Y divided by a fraction of users that find Y
relevant [36].

Using association rules can result in new and unexpected recommenda-
tions which makes them a perfect candidate for environments where novelty
is desired.

2.4 Optimization of Recommender systems

Although optimization of recommender systems can mean anything with
a goal of improving the quality recommendations, this thesis focuses on
optimization through parameters of the algorithms used to generate the
recommendations.

This kind of optimization is basically an optimization of a multidi-
mensional function representing the quality of the recommender system
where each dimension represents a specific parameter of an algorithm. This
problem has been studied extensively in the literature and is still studied
today [37, 38].

The gradient or hessian of the function usually cannot be computed and
therefore methods such as simulated annealing [39], genetic algorithms [40]
or particle swarm optimization [41] are used.

Optimization can be done either offline or online. Offline means that
we optimize according to the interactions collected in the past while online
refers to changing the deployed system and evaluating the results in real
time.
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2.4.1 Offline optimization

Because of the fast evaluation time made possible by the offline nature of
the optimization we can spend a large number of evaluations in search for
the global optimum, and it does not matter which points are tested.

On the other hand, due to the fact that the recommender system is
being optimized on historic data, it may not perform well at the time of
deployment. Another disadvantage is that once is the system optimized and
running, it cannot react to any changes in the environment and therefore
its performance deteriorates over time.

2.4.2 Online optimization

In comparison with offline optimization each evaluation takes much more
time because we have to wait for the interactions to happen, instead of
already having them collected. The evaluation time is further increased in
order to reduce the noise that comes with every real world testing. And
what is more, testing wrong system configurations can lead to disappointed
customers.

The online optimization methods therefore have to cope with these prob-
lems, mainly the small number of evaluations and the noise. Among the
most prominent methods used under these circumstances are evolutionary
strategies and surrogate modeling. Both are briefly described in the follow-
ing sections 2.5 and 2.6.

The crucial advantage of online optimization is that it is based on real
time data which allows to adapt the recommender system according to the
latest changes in the environment.

2.5 Evolutionary strategy

In order to optimize recommender systems we need to find the best settings
of their parameters, and doing it online means that we have to spend as less
evaluations as possible. Similar problems are being solved by evolutionary
strategies.

Evolutionary strategies (ES) are evolutionary algorithms with individu-
als represented by vectors of real values. Their usual goal is to optimize
an objective or a quality function by finding the best values of a given set
of parameters [44].

The ES algorithm can be simply described in 2 steps:
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1. Create new individuals (offspring) by changing or combining the old
ones (parents). The changes of the individuals, called mutations usu-
ally follow a Gaussian distribution.

2. Evaluate the individuals and reduce the population to the original
size by removing the worst ones.

A special variant of ES is a self adapting evolutionary strategy which
keeps a global parameter affecting the creation of the new individuals and
changes it from generation to generation. That makes the evolutionary
strategy able to react to changes in either the composition of the popula-
tion or the environment in which is the ES running. An example of such
parameter can be a mutation rate specifying the possible size of muta-
tion [44].

2.6 Surrogate model

The online quality of different recommender system configurations is an
example of a highly accurate model that is too expensive to run. It is im-
possible to measure all possible configurations in a reasonable time. There-
fore, the only way to get the desired results is to use a simpler, less accurate
approximation of the model. This kind of an approximation is called a sur-
rogate model or a metamodel because it is basically a model of a model [42].

The whole model is usually fitted to a number of points evaluated by
an experiment or a high fidelity simulation to ensure that it represents the
complex reality to at least some degree [43].

Due to the fact that the surrogate model is much simpler, it also reduces
the amount of real world noise present in experimentally gathered data and
is therefore much more suitable for various optimization tasks.
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Chapter 3

Design and implementation

This chapter describes the final version of the designed algorithm. It starts
by presenting the environment in which is the proposed algorithm going
to run and then follows with its detailed description. A special attention
is paid to important or innovative parts. The chapter is concluded with
a brief section about the implementation.

3.1 Environment

Recombee [45] is providing its recommender system as a service to many e-
commerce companies wanting to maximize their profits by having as many
users as possible consuming the items they offer. The whole system is
therefore already working, with all the algorithms already parallely imple-
mented and optimized both for speed and memory consumption. Our goal
is to extend the recommender engine by an automated optimization al-
gorithm which will continuously improve its performance by finding better
parameter settings.

All the collected data is being stored in a central database with a sep-
arate schema for each of the deployed recommender systems. The whole
A/B testing methodology, described in Section 3.2, is already prepared and
has an interface in form of a database table called ab testing present in
each schema. Resulting program wrapping the proposed algorithm takes
the generated set of new configuration parameters and inserts them into
this table. The recommender system will then start the A/B testing of
those configurations. After a sufficient amount of information is collected,
the algorithm evaluates the configurations by querying tables containing
the collected recommendations, user actions and conversions.
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Therefore, all the interactions with the rest of the recommender system
are only through the database. As a result, the proposed algorithm is
capable of optimizing any recommendation algorithm that allows to change
its parameters through the A/B testing interface table.

3.2 Evaluation method

A variant of A/B testing called Multivariable testing is employed to evaluate
multiple configurations of the recommender system at the same time. Each
of the configurations consists of multiple parameters allowing us to find the
optimal combination of their values, which would be otherwise complicated
because some of the parameters influence each other.

All users coming to the site are randomly distributed into groups of ap-
proximately even size and each of that groups is assigned to one of the tested
recommender system configurations. For a relevant evaluation, a sample of
certain minimal size needs to be gathered to reduce the noise. In our case,
that means generating at least a couple thousands of recommendations by
each of the tested variants before evaluating them by a chosen metric.

In most cases a conversion rate is the selected evaluation metric. It
represents a portion of recommendations that the user not only interacted
with, but also consumed the recommended item, meaning that he pur-
chased, watched or read it, with respect to what the current domain offers.
This metric is a popular way of evaluating recommender systems because
it is directly tied to increasing the number of satisfied users.

In case of web sites with a number of purchases too low to make reliable
evaluations possible in a reasonable time, mostly due to a small amount
of visitors, an action rate is used as an evaluation metric instead. It cap-
tures the portion of recommendations that the user clicked on. Although
interacting with the recommendation undoubtedly means that it caught the
user’s attention, it does not have to mean that he found what he was look-
ing for and it is therefore not clear whether will such recommendation lead
to an increase of revenues or not. On the other hand, we observed some cor-
relation between actions and conversions during our experiments, meaning
that while not perfect, the action rate appears to be a usable substitute for
the conversion rate.
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3.3 Optimization algorithm description

In order to adaptively optimize the recommender systems online through
the use of A/B testing, we propose a Surrogate Assisted Online Optimiza-
tion Algorithm (SAOOA) that has been inspired by Evolutionary Strategies.

It is designed to explore the complex multidimensional space of system
configurations while overcoming the real world noise and frequent changes
of the environment. To make that possible, a Gaussian mixture model,
representing the probability that a certain configuration will be selected for
evaluation, is being adapted each generation according to the current pop-
ulation of individuals. Individual, a real valued vector of parameter values,
represents a single configuration of the recommender system.

An outline can be seen in Algorithm 2, where N is the number of indi-
viduals added to the population in one generation. Because we are evalu-
ating every individual through A/B testing, a larger N requires more users
for a proper fitness measurement, therefore it is usually small (< 10).

M is the number of last generations kept in population, more generations
means more data, which translates into a more detailed mixture model, but
it also means slower reaction to changes. Therefore, we set the M according
to the speed of change in the environment. We have experimentally found
that M = 3 works well under all sorts of different conditions.

A fitness of a configuration refers to the value received by evaluating it,
and a gaussian refers to a single Gaussian function of the Gaussian mixture
model.

The algorithm starts by sampling an initial population from a Gauss
distribution with a mean placed where we estimate the optimal configura-
tion and a standard deviation chosen according to how sure are we about
that estimate. If we cannot estimate the optimal configuration in any way,
we simply place the function at the center of the configuration space and
set the deviation large enough to enable generation of any configuration.

After the creation of the initial population, the actual optimization
starts. Firstly, new individuals are evaluated according to a method de-
scribed in Section 3.2, then the standard deviation of the Gaussian func-
tions, making up the mixture model, is updated. Importance of this step
and how exactly is it done is described in Section 3.6. After that, the whole
mixture model is created as a sum of gaussians representing each of the in-
dividuals. Some of the gaussians are penalized, which is a process examined
in Section 3.5, and all of them are multiplied by a weight exponentially cor-
relating with the number of generations they are in the population. Other
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details of the model are explained in Section 3.4.

Finally, new individuals are sampled from the mixture model and the
whole cycle starts again. And because of the ever changing environment, it
never stops.

3.4 Gaussian mixture model

The GMM, representing the probability of new individuals being generated
at certain coordinates, is not technically a surrogate model as described
in Section 2.6, because we evaluate the selected individuals online each
generation. On the other hand, its aim is to simplify the noisy real world
environment and to provide a way to generate new individuals easily.

Each parameter is being optimized inside a defined interval of values. All
used gaussians have diagonal covariance matrices with standard deviation
in each dimension proportionate to the size of interval corresponding to the
parameter representing that dimension. The exact way of calculating the
standard deviation is described in Section 3.6.

When sampling new individuals, they cannot be generated closer than
σ/2 from each other (in every dimension) because that would have two neg-
ative consequences. Firstly, it would reduce the exploration of the available
space which is undesirable due to the expensive evaluation of each indi-
vidual and secondly, the gaussians representing individuals very close to
each other, or even on top of each other, would merge and create an im-
pression of an individual with much higher fitness than it actually has. This
is different from a scenario when gaussians with centers σ/2, or more, away
from each other merge and create one very high ”hill”. That just means
that we are very confident about this area having above average fitness, and
therefore generate individuals in it with a high probability.

3.5 Penalization

One of the most important aspects of building the mixture model is pen-
alizing gaussians representing sub-average individuals, which amplifies the
differences between the individuals that would otherwise be undistinguish-
able, it also prevents a scenario where are multiple sub-average individuals
generated close to each other, their gaussians merge and create an impres-
sion of an above-average area. This can be observed happening in the center
area of Fig. 3.1, while Fig. 3.2 shows how penalization solves the problem
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Algorithm 2: SAOOA

input : Number of individuals in one generation N ∈ N,
Number of generations kept in population M ∈ N,
Generation number K ∈ N

output: N new individuals

/* Initialization */

new individuals ← sample N individuals from an initial gaussian
K ← 1

/* Endless loop of optimization */

while true do
population ← population ∪ new individuals
old individuals ← individuals older than M generations
population ← population \ old individuals

/* Evaluate the individuals */

foreach individual ∈ new individuals do
individual .fitness ← evaluate(individual)
individual .K ← K

average fitness[K]← average fitness(new individuals)

/* Update the standard deviation */

γ ← recalculate gamma(γ)
σ ← σd ∗ γ
/* Create the Gaussian mixture model */

for i← 1 to length(population) do
amplitude ← population[i ].fitness
mean ← population[i ].genome
gaussian ← Gauss(amplitude,mean,σ)

/* Penalize the sub-average individuals */

if individual [i ].fitness < average fitness [population[i ].K ] then
gaussian ← gaussian + c ∗ (population[i ].fitness −
average fitness [population[i ].K ])

/* Weight the gaussians */

weight ←
(
1
2

)K−population[i].K
gaussians [i]← gaussian ∗ weight

GMM ←
∑length(population)

i=1 gaussians [i ]

/* Sample new individuals from the GMM */

new individuals ← sample(GMM )

K ← K + 1
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and transforms the model into a much more relevant estimate of promising
regions.

Penalization is done by adding c∗(fKi−fK) to aforementioned gaussians.
c is an experimentally found constant equal to 13, if it was smaller, all
the gaussians would merge into a one large ”hill” because the sub-average
individuals would not be penalized enough. On the other hand, if it was
bigger, the penalization would be so severe that it would turn the model
into a one large ”valley”. Therefore the value 13 is a sought for balance
between these two extremes.

fKi is a fitness of an i-th individual from generation K, and fK is an
average fitness of individuals from generation K.

Individuals are always compared only within one generation because
each generation can be evaluated for a quite long period of time which can
result in different fitness values than in previous generations thanks to the
constant changes in the environment.

3.6 Updating standard deviation

Another important feature of the proposed algorithm is updating the stand-
ard deviation before creating the mixture model.

We generally do not want large changes of the individuals, because then
we risk generating some horribly underperforming configurations, which is
undesirable due to the nature of online A/B Testing. Therefore a default
standard deviation is quite small, specifically a 1/100 of parameter’s interval
size.

In case we are not sure about the location of an initial area used to
generate the first individuals, we are forced to make it significantly larger
and then risk that the first population will be far away from optimum,
making it very hard to reach with only small changes made possible by the
default standard deviation.

Solution to this problem is a standard deviation multiplier γ allowing
us to recalculate the standard deviation of all gaussians each generation as:

σ = σd ∗ γ (3.1)

σd is a default standard deviation set at the start of the algorithm. γ is
initially set to a number large enough to allow the exploration of the whole
space during the subsequent process of slowly reducing the multiplier to its
base level.
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Figure 3.1: Multiple sub-par individuals creating an above-average region.27



3. Design and implementation

Figure 3.2: Solution to the problem in Fig. 3.1 by penalization.28
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Therefore a method inspired by simulated annealing is employed, re-
ducing the exploration rate of the algorithm with an increasing number of
passed generations.

Because of the dynamic environment, we cannot converge to a specific
point and stay there, that is why we never decrease the multiplier past
a certain base threshold, meaning that exploration always continues.

If we detect a significant change in the environment exceeding typical
noise, we increase the multiplier to ensure that we do not get stuck in
a suddenly sub-average area. In our case, we consider a change significant
if the difference is more than 25%. Changes are detected by keeping the
best individual from the previous generation and then comparing the two
measurements of its fitness value. This approach is called elitist selection
and we will call this particular individual an elitist.

Unfortunately, due to the large noise and complex environment, recog-
nizing a true global change has proven to be difficult.

3.7 Implementation

The whole optimization algorithm has been implemented from scratch in
Java 7 [46] as a multi-threaded application capable of optimizing several
recommender systems at once. It is also capable of looking for the optimal
settings of unlimited number of parameters at the same time, unfortunately
the amount of user interactions is usually too small to optimize more than
two parameters simultaneously.

As has been mentioned earlier in Section 3.1, the program interacts with
the rest of the recommender system deployed for each of the customers only
through the tables in their respective schema. Java Database Connectivity
(JDBC) [47] is used to connect it with the central database and access the
following tables:

• ab testing Provides interface for evaluation of the selected config-
urations in form of two columns: A/B testing group and parameter
settings to be evaluated.

• recomms Contains all information about recommendations includ-
ing time, the recommended item, which configuration of the system
generated it and other details.

• conversions or actions These tables store information about user
purchases or other actions based on recommendations. Only one of
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those tables is used for evaluation of the configurations, which one
depends on the chosen metric.

• optim data The optimization program creates this table as soon as
it is started and uses it to store information about the evaluated
configurations.

Because the newly generated parameter settings are inserted into the
ab testing table in a JSON format [48], a library called Jackson [49] is
used for manipulation with that format.

3.7.1 Visualization

The final program having the proposed algorithm in its core is capable of
automatically generating different kinds of graphs depending on the amount
of optimized parameters or whether should the mixture model be depicted.
They are all being created in Gnuplot 5.0 [50].

After each evaluation of multiple configurations, some way of a graphical
representation was needed to clearly show the tested parameter settings
and how well they performed. A simple graph consisting of colored points
proved to be the best variant. An example can be seen in Figure 3.3, color
of a point represents fitness of the individual.

In order to transparently depict the selection of new configurations,
a graph of the algorithm’s mixture model was created. Due to the fact that
optimization of two parameters is the most common, all graphs outside
of this section depict 3 dimensional models. But the program is able to
generate graphs for any number of parameters. From one, depicted in
Figure 3.4, to many. The problem of displaying an N > 3 dimensional
model is solved by creating N − 1 projections of two parameters similar to
Figure 3.2 while the other parameters are set either automatically according
to the best individual or to a manually specified values.

The X and Y axis stand for the parameters that are being optimized.
Color represents the function value of the GMM which has a direct impact
on the selection of new individuals. Because we generate a new graph after
each evaluation we are most interested in the freshly evaluated individuals,
that is why they are represented by contrasting brown points with their
fitness written above them. The older individuals are depicted as black
circles colored according to their fitness. The pictured GMM is always based
on the visible points with the brown ones being most influential due to the
weighting of older individuals. New individuals are generated according to
the portrayed GMM and added to the graph as yellow squares. At that
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Figure 3.3: A simple graph showing all the evaluated configurations.

moment we do not know their fitness so we assign them one according to
the GMM, this assigned fitness is only for the purpose of putting the squares
somewhere in the graph, it bears no other significance what so ever.

Brown points therefore represent the same individuals as the yellow
squares in the graph of a previous evaluation. And because of the elitist
approach, the best individual from the current evaluation is also selected for
the next evaluation and is therefore depicted as a brown point surrounded
by a yellow square in a top down view of a three dimensional model.
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Figure 3.4: Graph of a mixture model while optimizing only one parameter.
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Chapter 4

Experiments

This chapter contains both simulated and online experiments. The simula-
tions are used to demonstrate the functionality of the algorithm and explain
reasons behind some of the design decisions and their benefits. The online
experiments prove that the algorithm is capable of optimizing real world
recommender systems.

4.1 Simulated experiments

All simulations are inspired by situations encountered during online tests
that were conducted while developing the algorithm. The three presented
situations along with their combinations cover every possible problem that
the optimization algorithm has to deal with.

The experiments are simulated because all the simulated environmental
changes are happening at once in the real world and it would be complicated
to show specific features of the algorithm. Therefore the actual data from
online measurements are not used in order to provide a more transparent
demonstration of how the algorithms works.

The first evaluation of a simulation is always based on data collected
online. The algorithm then generated new individuals based on its mixture
model and we manually assigned fitness values to those individuals instead
of evaluating them online. This is the only place where we intervened with
the optimization process.

Data presented in the simulations are based on an experiment in which
two parameters: beta and k were optimized. The included graphs therefore
show a top down view of the three dimensional mixture model.
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4.1.1 Movement of the above-average area

This experiment simulates a slow movement of the above-average area that
we have converged to. It is one of the most usual changes in the environment
and the proposed algorithm is therefore designed to cope with it. It can
be caused by the composition of users becoming slightly different over time
and demanding a new configuration of the recommender system as a result.

The movement of this area can also happen very rapidly which is typ-
ically caused by a global change in the environment. This scenario is more
thoroughly described in Section 4.1.2.

Each evaluation and its impact on the mixture model can be seen in
Figure 4.1. The simulation starts with the algorithm already converged to
an area positioned in a bottom left corner of the first image. This area is
slowly getting worse while the above-average one is moving towards larger
beta and k. We can see the adaptation of the SAOOA algorithm during the
next evaluations which would continue till it reached an area surrounded
by configurations with lower fitness.

This experiment demonstrates the basic ability of the algorithm to con-
tinuously search for the best configurations even after it converged to some
specific area. It does so by never decreasing the standard deviation multi-
plier past a certain threshold and therefore never ending the optimization
process.

4.1.2 Global fitness change

The environment in which is the optimization running undergoes a radical
change from time to time, for example, web page displaying the recom-
mended items is redesigned. These changes can be divided into two groups
depending on how they impact the user perception of recommendations.

• The relative quality of all configurations stays the same and the only
thing that changed is that their fitness was increased or decreased by
a same amount. For example, the fitness can be globally decreased
because recommendations are newly displayed at the bottom of the
page instead of the top, making them harder to notice.

• Users now prefer different recommendations and the large changes in
fitness of evaluated individuals are accompanied by the creation of
new above-average areas. This scenario is actually very similar to the
first one in a way how the algorithm reacts. Instead of returning to the
previous location it simply converges towards a new region instead.
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Figure 4.1: Simulation of a moving above-average area.
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The first scenario is simulated in this experiment and its progress is de-
picted in Figure 4.2. The first image shows all the individuals concentrated
in a small area. That means that the algorithm has already converged to
this specific area and therefore has the lowest possible γ. Then, the second
evaluation detects a large change in fitness of the elitist as a result of the
global environment change. Multiplier is increased and newly generated
individuals are scattered in a suddenly much larger area. During the next
evaluations the γ is being linearly decreased and due to the fact that the
relative fitness of different individuals has not changed, the algorithm con-
verges to an area approximately same as the one at the beginning of the
simulation. This can be clearly seen by comparing the location of individu-
als in the sixth evaluation with individuals from the first one.

This experiment provides an insight into how exactly does the SAOOA
algorithm reacts to global changes in the environment and shows that it does
not have a problem with returning to the previously found above-average
area after such changes.

It also demonstrates why is the multiplier updated after detection of such
large changes. Imagine an algorithm without this dynamically increasing
exploration feature. If a new above-average region is formed far away from
the current one as a consequence of the global changes, it may be impossible
to find out in which direction it is due to the very low exploration rate which
is necessary to keep all generated individuals in the already found area.
Therefore, even though such an algorithm would be capable of converging
to an above-average area, it would be unable to react to any substantial
changes afterwards.

4.1.3 Unusually large noise

If the fitness of some individual i changes significantly due to an unusually
large noise, two scenarios must be considered.

If the individual i is the current elitist, meaning that it is kept from
the previous generation, then the algorithm detects the change and reacts
by increasing the multiplier. This increases the exploration rate of the
algorithm and allows it to reach the previously found above-average area
again, unless disrupted by another very noisy measurements. Such a return
to the previous location can be observed in Figure 4.2 which is explained
in Section 4.1.2.

On the other hand, if the individual i is not the current elitist, which
means that it has probably not been evaluated before, then the algorithm
does not react in any special way, because it cannot compare the current
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Figure 4.2: Simulation of global decrease of fitness affecting the evaluation
of all individuals.
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fitness value to any previous one. As a result, the noise affects only the
formation of the mixture model.

Two cases are possible depending on how exactly the noise influenced
the measured fitness.

• If it increased the fitness of the individual, it would very likely be-
come the new elitist, which would mean that it would be evaluated
again next generation. That evaluation would reveal that the previ-
ous fitness value was significantly different from the current one and
therefore trigger an increase of the standard deviation multiplier. Un-
less the second measurement was also very noisy of course. After the
increase of γ the algorithm would converge to an old above-average
region or a newly formed one. How exactly does the convergence takes
place is described in Section 4.1.2.

• Lower fitness of the individual would result in a shape of the mix-
ture model causing new individuals to be generated away from the
individual i. The fact that i is not the elitist means that there was
an individual with higher fitness in the previous generation, which is
now more likely to become the elitist again because one of the indi-
viduals that could have had the highest fitness out of this generation,
has been negatively impacted by noise. As a result, even though the
model was less accurate, new individuals are allowed to be generated
from the so far above-average area because the knowledge about its
location was carried from the previous generation through the elitist.
A similar scenario is simulated in this experiment.

The progress of the simulation can be seen in Figure 4.3. The first
evaluation of the simulation reveals unusually low fitness of the individual
depicted in the top left corner. The algorithm reacts by generating new
individuals away from the affected one. This trend continues through the
second and third evaluation while the effect of the noisy measurement looses
importance due to the weighting of gaussians representing old individuals.
After three generations, the negatively affected individual is removed from
the population and the algorithm starts exploring the top left corner again.

As a result, this experiment shows that the algorithm is capable of cop-
ing with extremely noisy measurements. Of course, if multiple following
evaluations are heavily influenced by noise, it becomes impossible to effect-
ively search for better configurations. Although we can reduce the noise
by prolonging the evaluation time of recommendations, this approach have
some drawbacks that are discussed more thoroughly in Section 4.2.
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Figure 4.3: Simulation of unusually large noise affecting the evaluation of
a single individual.
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The experiment also shows positive effects of employing the elitist ap-
proach. It stabilizes the algorithm by making sure that all the new in-
dividuals are not going to be generated far away from the above-average
area which would be possible due to the probabilistic nature of the process.
It also makes it more conservative by evaluating a configuration that has
already been tested online with good results. And lastly, it provides means
to detect and quantify changes in the environment.

4.2 Online experiments

The algorithm has been tested on four different e-commerce websites during
the development and has been improved to the current state in order to
deal with the encountered problems. The final version of the algorithm
as presented in Chapter 3 has been successfully tested on two websites.
We will refer to them simply as Website 1 and Website 2.

In case of the first one, we did not know the location of the optimal area
and therefore started the algorithm with a very large standard deviation
multiplier. After 15 generations, it has successfully converged to an area
with a 20% higher conversion rate than the one it started in. In order
to measure the difference, individuals in both areas were evaluated at the
same time to rule out the effects of global changes happening between the
beginning of the experiment and its end. To make sure that the measured
increase in conversion rate was not caused by noise, we were evaluating the
comparison generation for twice as long as the standard generations (96
hours).

We have already found out an area of very good parameter settings
for the Website 2 before deploying the optimization method, therefore we
set the standard deviation multiplier to a level representing that the al-
gorithm has already converged. It has successfully stayed in that area for
over a month at the time of writing this, overcoming several global changes
and noisy measurements during which it explored the surrounding areas
thanks to the temporarily increased standard deviation multiplier.

The most typical problem that we had to deal with was a small number
of user interactions usually resulting in a large noise. The only solution
is to prolong the time of the evaluation of the tested configurations which
allows to compensate for the lack of interactions. On the other hand, it
significantly slows down the whole optimization process which may make it
unable to locate the above-average areas or react to the global changes in
a reasonable time.
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4.2. Online experiments

Consider the following example: the successful experiment mentioned
above, where the algorithm converged after 15 generations, had to evaluate
each generation for 48 hours to obtain relevant measurements. It therefore
took 30 days to find a sufficiently good area, which is still acceptable con-
sidering the low traffic and the fact that we could not narrow the search
down at the beginning. If a single evaluation had to last a week, it would
take months to converge, but due to global changes in the environment that
usually happen each couple of months, it could take forever. As a result,
the optimization algorithm does not work very well on websites with ex-
tremely low number of visitors. On the other hand, even only a thousand
visitors a day create enough interactions for the algorithm to work without
any problems.

It is important to note that due to the expert knowledge of the al-
gorithms and provided information about the domain, we are in most cases
able to pinpoint the initial location to an area significantly smaller than the
whole configuration space. This in turn greatly reduces the time that the
algorithm needs to converge. The Website 1 has got approximately 10 000
interactions per day which represent the typical size of traffic that we had
to deal with. For such websites, it usually takes around 5 evaluations to
find an above average area starting from the initial one. That translates
into 5 - 10 days of optimization depending on the amount of noise.

Longer evaluation time reduces the noise in all cases not just in the one
with small number of interactions. This can be observed in Figures 4.4 and
4.5 that are showing results of measurements made online at Website 1.

The Figure 4.4 depicts fitness of five individuals evaluated for increas-
ingly longer duration of time. It clearly shows that longer evaluation results
in less noise and better reveals the underlying global changes. In this case,
the fitness of all individuals is apparently globally decreasing.

The Figure 4.5 is based on the same data as the previous one. It shows
for how many percent has the fitness changed from one evaluation to the
next. We can see that the sudden changes can overcome 20% during the 24
hour long evaluations that are clearly very noisy. The measurements with
increased duration minimizing the noise suggest, that the rate of global
change is increasing. If it crosses a certain value (we have experimentally
chosen 25%) the algorithm will react by increasing the standard multiplier.

Both figures show that the 24 hours long measurements are too noisy
in case of the Website 1. On the other hand, increasing the time past
48 hours does not bring significant improvements in comparison with how
much longer it then takes to converge. As a result the length of evaluation
has been set at 48 hours in this specific case.
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4. Experiments

The online experiments have shown that the proposed algorithm is stable
enough for a long term optimization and that it is capable of overcoming all
sorts of problems encountered during online testing. The experiments have
also revealed that the optimization of websites with approximately 10 000
interactions per day usually takes between five to ten days. And lastly, the
reduction of noise through the length of evaluation has been discussed with
the help of Figure 4.4 and 4.5.
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4.2. Online experiments

Figure 4.4: Fitness evaluations of five different individuals (recommender
system configurations) at Website 1.
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4. Experiments

Figure 4.5: Fitness changes from one evaluation of a single individual to the
next, expressed in percentage of the previous fitness. This figure is based
on the same measurements as the Figure 4.4.

44



Conclusion

This thesis has described basic recommender system types and then pro-
ceeded to focus on their evaluation. It has been explained that to prop-
erly evaluate a recommender system two things have to be chosen. Firstly,
an experimental settings, which can be selected from online, offline or a user
study variants. And secondly, an optimization metric which is particularly
hard to choose correctly because a large number of them exist and each one
focuses on different aspects of the system. On the other hand, during online
evaluations that we are most interested in, the chosen metric is typically
simple and connected to the profit of the website.

Three most frequently used algorithms behind recommender systems
and basic distinctions between online and offline optimization of these sys-
tems have been described in the rest of the Chapter 2.

The Chapter 3 has introduced the new SAOOA algorithm capable of
online optimization of recommender systems while overcoming noisy meas-
urements and changes in the environment. Along with how it works it has
also described its implementation as well as implementation of the visual-
ization methods used to depict the inner state of the algorithm or quality
of different recommender configurations.

The capabilities of the proposed algorithm have been demonstrated on
three simulations. First one has shown that it is able to follow small con-
tinuous changes in the environment. The second one has simulated a sudden
change in quality of all configurations and the third one an unusually noisy
evaluation of one individual. The last two simulations have demonstrated
that the algorithm is capable of staying in the area it converged to in spite
of global changes and noise.

The final version of the algorithm has also been successfully tested online
on recommender systems deployed to two real world e-commerce websites,
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Conclusion

where it has proven its capabilities demonstrated during simulations.
In case of the first website, the algorithm has managed to converge to

an area with a 20% higher conversion rate, where it has stayed making
small adjustments. The second online experiment was different in that
we have already known the location of the desired region of above-average
configurations. The algorithm has successfully remained in that area for
several weeks while occasionally testing the surroundings during adaptation
to a number of changes in the environment.

At the time of writing this thesis, the algorithm was still running at sev-
eral websites for over a month, proving that it is both stable and successful
in online optimization of various recommendation algorithms and that it is
therefore perfectly capable of improving the performance of recommender
systems.

Future work

During our future work we plan to expand the optimization algorithm with
ability to automatically determine the number of individuals evaluated each
generation according to the size of user traffic. We would also like to add
a possibility of comparing several recommendation algorithms online, auto-
matically selecting the best one for the current domain and then further
optimize it through its parameters.

46



Bibliography

[1] Sarwar, B.; Karypis, G.; Konstan, J.; et al. Analysis of recommenda-
tion algorithms for e-commerce. In Proceedings of the 2nd ACM con-
ference on Electronic commerce, ACM, 2000, pp. 158–167.

[2] YouTube. https://www.youtube.com/, [Online; accessed 21-March-
2016].

[3] Netflix. https://www.netflix.com/cz/, [Online; accessed 21-March-
2016].

[4] Steam. http://store.steampowered.com/, [Online; accessed 21-
March-2016].

[5] Resnick, P.; Varian, H. R. Recommender systems. Communications of
the ACM, volume 40, no. 3, 1997: pp. 56–58.

[6] Burke, R. Hybrid recommender systems: Survey and experiments.
User modeling and user-adapted interaction, volume 12, no. 4, 2002:
pp. 331–370.

[7] Ricci, F.; Rokach, L.; Shapira, B. Introduction to recommender systems
handbook. Springer, 2011.

[8] Bennett, J.; Lanning, S. The Netflix Prize. In KDD Cup and Workshop,
2007.

[9] Melville, P.; Sindhwani, V. Recommender systems. In Encyclopedia of
machine learning, Springer, 2011, pp. 829–838.

47

https://www.youtube.com/
https://www.netflix.com/cz/
http://store.steampowered.com/


Bibliography

[10] Trewin, S. Knowledge-based recommender systems. Encyclopedia of
library and information science, volume 69, no. Supplement 32, 2000:
p. 180.

[11] Schafer, J. B.; Frankowski, D.; Herlocker, J.; et al. Collaborative fil-
tering recommender systems. In The adaptive web, Springer, 2007, pp.
291–324.

[12] Schein, A. I.; Popescul, A.; Ungar, L. H.; et al. Methods and metrics
for cold-start recommendations. In Proceedings of the 25th annual in-
ternational ACM SIGIR conference on Research and development in
information retrieval, ACM, 2002, pp. 253–260.

[13] Lops, P.; De Gemmis, M.; Semeraro, G. Content-based recommender
systems: State of the art and trends. In Recommender systems hand-
book, Springer, 2011, pp. 73–105.

[14] Gunawardana, A.; Shani, G. A survey of accuracy evaluation metrics
of recommendation tasks. The Journal of Machine Learning Research,
volume 10, 2009: pp. 2935–2962.

[15] Gunawardana, A.; Shani, G. Evaluating Recommender Systems. In
Recommender Systems Handbook, Springer, 2015, pp. 265–308.

[16] Kohavi, R.; Longbotham, R.; Sommerfield, D.; et al. Controlled ex-
periments on the web: survey and practical guide. Data mining and
knowledge discovery, volume 18, no. 1, 2009: pp. 140–181.

[17] Peterson, E. T. Web analytics demystified: a marketer’s guide to un-
derstanding how your web site affects your business. Celilo Group Me-
dia, 2004, ISBN 0974358428, 76–78 pp.

[18] Vermorel, J.; Mohri, M. Multi-armed bandit algorithms and empirical
evaluation. In Machine learning: ECML 2005, Springer, 2005, pp. 437–
448.

[19] Wu, W.; He, L.; Yang, J. Evaluating recommender systems. In Digital
Information Management (ICDIM), 2012 Seventh International Con-
ference on Digital Information Management, IEEE, 2012, pp. 56–61.

[20] Said, A. Evaluating the accuracy and utility of recommender systems.
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Appendix A

Acronyms

GMM Gaussian Mixture Model

JDBC Java Database Connectivity

JSON JavaScript Object Notation

ES Evolutionary Strategy
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Appendix B

Contents of enclosed CD

readme.txt................the file with data disk contents description
src .................................... the directory of source codes

implementation..........................implementation sources
thesis............the directory of LATEX source codes of the thesis

text........................................the thesis text directory
BP_Bartyzal_Radek_2016.pdf......the thesis text in PDF format
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